Deactivation of Ni-YSZ Material in Dry Methane and Oxidation of Various Forms of Deposited Carbon

Author:

Novosel Barbara1,Marinšek Marjan,Maček Jadran2

Affiliation:

1. e-mail address:

2. Faculty of Chemistry and Chemical Technology and Center of Excellence Low-Carbon Technologies (CO NOT), University of Ljubljana, SI-1001 Ljubljana, Slovenia

Abstract

Carbon deposits are the most probable mode of deactivation for solid oxide fuel cell (SOFCs) using methane or higher hydrocarbons as fuel. The deposition of various carbon allotropes on the anode material was studied under dynamic and isothermal conditions. The results show methane dissociation on Ni-YSZ (nickel-yttrium stabilized zirconia) under the temperature-programmed mode in three general steps. Under isothermal conditions, various carbon species formed depending on the temperature. The presence of amorphous, filamentous, pyrolitic, and graphitic carbon allotropes was determined by quadrupole mass spectroscopy (QMS), X-ray crystallography, field emission scanning electron microscopy (FE-SEM), and infrared spectroscopy (IR). Carbon allotropes were subsequently oxidized in the atmosphere with 20.0 vol% and 0.5 vol% of oxygen in argon. Complex oxidation mechanisms were detected and discussed.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3