Examination of Selective Pulsed Laser Micropolishing on Microfabricated Nickel Samples Using Spatial Frequency Analysis

Author:

Perry Tyler L.1,Werschmoeller Dirk1,Duffie Neil A.1,Li Xiaochun1,Pfefferkorn Frank E.1

Affiliation:

1. Department of Mechanical Engineering, University of Wisconsin-Madison, 1513 University Avenue, Madison, WI

Abstract

The precision of parts created by microfabrication processes is limited by surface roughness. Therefore, as a means of improving surface roughness, pulsed laser micropolishing on nickel was examined numerically and experimentally. A one-dimensional finite element method model was used to estimate the melt depth and duration for single 50–300 ns laser pulses. The critical frequency was introduced to predict the effectiveness of polishing in the spatial frequency domain. A 1064 nm Nd:YAG laser with 300 ns pulses was used to experimentally investigate pulsed laser polishing on microfabricated nickel samples with microscale line features. A microfabricated sample with 2.5 μm wide and 0.2 μm high lines spaced 5 μm apart and one with 5 μm wide and 0.38 μm high lines spaced 10 μm apart were polished with 300 ns long pulses of 47.2 J/cm2 and 44.1 J/cm2 fluences, respectively. The critical frequency for these experimental conditions was predicted and compared with the reduction in the average surface roughness measured for samples with two different spatial frequency contents. The average surface roughness of 5 μm and 10 μm wavelength line features were reduced from 0.112 μm to 0.015 μm and from 0.112 μm to 0.059 μm, respectively. Four regimes of pulsed laser micropolishing are identified as a function of laser fluence for a given pulse width: (1) at low fluences no polishing occurs due to insufficient melting, (2) moderate fluences allow sufficient melt time for surface wave damping and significant smoothing occurs, (3) increasing fluence reduces smoothing, and (4) high fluences cause roughening due to large recoil pressure and ablation. Significant improvements in average surface roughness can be achieved by pulsed laser micropolishing if the dominant frequency content of the original surface features is above the critical spatial frequency for polishing.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference37 articles.

1. Development of a Micro Annular Gear Pump by Micro Powder Injection Molding;Gietzelt;J. Mater. Sci.

2. Surface Roughness of Microstructured Component Fabricated by μMIM;Tay;Mater. Sci. Eng., A

3. Effects of Thermal Debinding on Surface Roughness in Micro Powder Injection Molding;Liu;Mater. Lett.

4. Binder System for STS 316 Nanopowder Feedstocks in Micro-Metal Injection Molding;Supriadi;J. Mater. Process. Technol.

5. Evaluation of Micromilled Metal Mold Masters for the Replication of Microchip Electrophoresis Devices;Hupert;Microfluid. Nanofluid.

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3