Rate Dependent Deformation of Semi-Crystalline Polypropylene Near Room Temperature

Author:

Arruda E. M.1,Ahzi S.2,Li Y.1,Ganesan A.2

Affiliation:

1. Mechanical Engineering and Applied Mechanics, The University of Michigan, Ann Arbor, MI 48109-2125

2. Mechanical Engineering, Center for Advanced Manufacturing, Clemson University, Clemson, S.C. 29634-0921

Abstract

We examine the strain rate dependent, large plastic deformation in isotropic semi-crystalline polypropylene at room temperature. Constant strain rate uniaxial compression tests on cylindrical polypropylene specimens show very little true strain softening under quasi-static conditions. At high strain rates very large amounts (38 percent) of apparent strain softening accompanied by temperature rises are recorded. We examine the capability of a recently proposed constitutive model of plastic deformation in semi-crystalline polymers to predict this behavior. We neglect the contribution of the amorphous phase to the plastic deformation response and include the effects of adiabatic heating at high strain rates. Attention is focused on the ability to predict rate dependent yielding, strain softening, strain hardening, and adiabatic temperature rises with this approach. Comparison of simulations and experimental results show good agreement and provide insight into the merits of using a polycrystalline modeling assumption versus incorporating the amorphous contribution. Discrepancies between experiments and model predictions are explained in terms of expectations associated with neglecting the amorphous deformation.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3