Structure of Round, Fully Developed, Buoyant Turbulent Plumes

Author:

Dai Z.1,Tseng L.-K.1,Faeth G. M.1

Affiliation:

1. Department of Aerospace Engineering, The University of Michigan, Ann Arbor, MI 48109-2118

Abstract

An experimental study of the structure of round buoyant turbulent plumes was carried out, emphasizing conditions in the fully developed (self-preserving) portion of the flow. Plume conditions were simulated using dense gas sources (carbon) dioxide and sulfur hexafluoride) in a still air environment. Mean and fluctuating mixture fraction properties were measured using single-and two-point laser-induced iodine fluorescence. The present measurements extended farther from the source (up to 151 source diameters) than most earlier measurements (up to 62 source diameters) and indicated that self-preserving turbulent plumes are narrower, with larger mean and fluctuating mixture fractions (when appropriately scaled) near the axis, than previously thought. Other mixture fraction measurements reported include probability density functions, temporal power spectra, radial spatial correlations and temporal and spatial integral scales.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Dynamics of Distributed Thermals;Proceeding of Proceedings of the 27th National and 5th International ISHMT-ASTFE Heat and Mass Transfer Conference December 14-17, 2023, IIT Patna, Patna-801106, Bihar, India;2024

2. Lattice-Boltzmann modeling of buoyancy-driven turbulent flows;Physics of Fluids;2022-05

3. Confounding effects of temperature in laser-induced fluorescence concentration measurements with iodine vapor;Measurement Science and Technology;2020-10-31

4. Numerical simulations of buoyancy-driven flows using adaptive mesh refinement: structure and dynamics of a large-scale helium plume;Theoretical and Computational Fluid Dynamics;2020-09-01

5. Basis to Calculate Exhaust Airflow Rate;Kitchen Pollutants Control and Ventilation;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3