Affiliation:
1. Faculty of Mathematics and Computer Science, University of Bialystok, Białystok 15-089, Poland e-mail:
2. Faculty of Mechanical Engineering, Bialystok University of Technology, Białystok 15-089, Poland e-mail:
Abstract
The most popular methods used for solving transient heat conduction problems, like finite element method (FEM) and boundary element method (BEM), require discretization of the domain or the boundary. The discretization problem escalates for unsteady issues, because an iterative process is required to solve them. An alternative to avoid the mentioned problem is parametric integral equations systems (PIESs), which do not require classical discretization of the boundary and the domain, while being numerically solved. PIES have been previously used with success to solve steady-state problems. Moreover, they have been recently tested also with success for transient heat conduction problems, without internal heat sources. The purpose of this paper is to generalize PIES based on analytical modification of classical boundary integral equation (BIE) for transient heat conduction with internal heat source and nonuniform rational basis spline (NURBS) for boundary modeling. The obtained generalization of PIES is tested on examples, mostly with defined exact solution.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献