Design of a Multiple-Lamp Large-Scale Solar Simulator

Author:

Kenny S. P.1,Davidson J. H.2

Affiliation:

1. Solar Energy Applications Laboratory, Colorado State University, Fort Collins, CO

2. Mechanical Engineering Department, University of Minnesota, Minneapolis, MN 55455

Abstract

A simple solution to the conflicting constraints of providing uniformity and collimation of irradiance in multiple-lamp solar simulators is proposed. As proof of concept, irradiance measurements obtained in a simulator comprised of 28 1-kW mercury-iodide gas discharge lamps and capable of irradiating a 1.22 m-by-2.44 m collector plane are given. The design is based on preventing a portion of the light from each bulb from reaching the collector plane. Light blockage is achieved by placing a “shadow board” 1.02 m from and parallel to the plane of the lamps. Lamps are arranged in an hexagonal pattern with 4 columns of 7 lamps at a lamp-to-lamp spacing and column-to-column spacing of 0.45 m. Lamp-to-collector plane distance is 3.05 m. The design is determined from measurements of the spatial distribution of radiant energy from a single lamp. Irradiance from an array of lamps is then simulated. Measurements of irradiance in the full-scale simulator confirm that uniformity and collimation conform to the American Society of Heating, Refrigerating and Air Conditioning Engineers’ standard. Average irradiance is 1080 W/m2. Maximum irradiance is 1190 W/m2 and minimum irradiance is 980 W/m2. Every point on the plane of the collector receives 100 percent of radiant energy from an area on the lamp array contained within a subtended angle of 20 deg.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3