Nonlinear Mechanics of Interlocking Cantilevers

Author:

Brown Joseph J.1,Mettler Ryan C.2,Supekar Omkar D.2,Bright Victor M.3

Affiliation:

1. Mem. ASME Department of Mechanical Engineering, University of Hawaii at Manoa, 2540 Dole St.—Holmes Hall 302, Honolulu, HI 96822-2344 e-mail:

2. Department of Mechanical Engineering, University of Colorado Boulder, 427 UCB, Boulder, CO 80309-0427 e-mail:

3. Fellow ASME Department of Mechanical Engineering, University of Colorado Boulder, 427 UCB, Boulder, CO 80309-0427 e-mail:

Abstract

The use of large-deflection springs, tabs, and other compliant systems to provide integral attachment, joining, and retention is well established and may be found throughout nature and the designed world. Such systems present a challenge for mechanical analysis due to the interaction of contact mechanics with large-deflection analysis. Interlocking structures experience a variable reaction force that depends on the cantilever angle at the contact point. This paper develops the mathematical analysis of interlocking cantilevers and provides verification with finite element analysis and physical measurements. Motivated by new opportunities for nanoscale compliant systems based on ultrathin films and two-dimensional (2D) materials, we created a nondimensional analysis of retention tab systems. This analysis uses iterative and elliptic integral solutions to the moment–curvature elastica of a suspended cantilever and can be scaled to large-deflection cantilevers of any size for which continuum mechanics applies. We find that when a compliant structure is bent backward during loading, overlap increases with load, until a force maximum is reached. In a force-limited scenario, surpassing this maximum would result in snap-through motion. By using angled cantilever restraint systems, the magnitude of insertion force relative to retention force can vary by 50× or more. The mathematical theory developed in this paper provides a basis for fast analysis and design of compliant retention systems, and expands the application of elliptic integrals for nonlinear problems.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3