Quasi Two-Dimensional Flow-Adaptive Algorithm for Pneumatic Probe Measurements

Author:

Bartsch Christian1,Hölle Magnus1,Jeschke Peter1,Metzler Timo2

Affiliation:

1. Institute of Jet Propulsion and Turbomachinery, RWTH Aachen University, Templergraben 55, Aachen 52062, Germany e-mail:

2. MTU Aero Engines AG, Dachauer Strasse 665, Munich 80995, Germany e-mail:

Abstract

The subject of this paper is a flow-adaptive measurement grid algorithm developed for one-dimensional (1D) and two-dimensional (2D) flow field surveys with pneumatic probes in turbomachinery flows. The algorithm automatically determines the distribution and the amount of measurement points needed for an approximation of the pressure distribution within a predefined accuracy. The algorithm is based on transient traverses, conducted back and forth in the circumferential direction. A correction of the dynamic response is applied by deconvolving the transient measurement data using the information embedded in both transient measurements. In consequence, the performance of the algorithm is largely independent of the transient traversing speed and the geometry of the pressure measuring system. Insertion and removal strategies are incorporated in order to reduce measurement points and increase robustness toward differing flow field conditions. The performance of the algorithm is demonstrated for 2D flow field surveys with a pneumatic five-hole probe in an annular cascade wind tunnel. The measurement grid points are automatically adjusted so that a consistent resolution of the flow features is achieved within the measurement domain. Furthermore, the application of the algorithm shows a significant reduction in the number of measurement points. Compared to the measurement duration based on uniform grids, the duration is reduced by at least 7%, while maintaining a high accuracy of the measurement. The purpose of this paper is to demonstrate the performance of measurement grids adapted to local flow field conditions. Consequently, valuable measurement time can be saved without a loss in quality of the data obtained.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference23 articles.

1. Secondary Flows and Boundary-Layer Accumulations in Turbine Nozzles,1953

2. An Intelligent Data Acquisition System for Fluid Mechanics Research;Exp. Fluids,1989

3. On the Development of an Efficient Wake Survey System,1995

4. A Flow Adaptive Aerodynamic Probe for Turbomachinery;Meas. Sci. Technol.,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3