A Preliminary Investigation Into the Characterization of Asphaltenes Extracted From an Oil Sand and Two Vacuum Residues From Petroleum Refining Using Nuclear Magnetic Resonance, DEPT, and MALDI-TOF

Author:

Zheng Ce1,Zhu Mingming2,Zhou Wenxu1,Zhang Dongke1

Affiliation:

1. Centre for Energy (M473), The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia

2. Centre for Energy (M473), The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia e-mail:

Abstract

This paper reports the findings of an investigation into the molecular structures and properties of three asphaltene samples, namely, an asphaltene sample extracted from Buton Oil Sand (Indonesia), and two asphaltene samples extracted from vacuum residues from Liaohe Refinery (China) and Vene Refinery (Venezuela), respectively. The average molecular structural parameters, including the average polycyclic aromatic hydrocarbon (PAH) size, average side chain length, and average molecular weight (AMW), of the three asphaltene samples were estimated using data from nuclear magnetic resonance (NMR) in combination with distortionless enhancement by polarization transfer (DEPT), and then compared against each other. The molecular weight distributions (MWDs) of the three asphaltene samples were measured using a matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The results indicated that the island molecular architecture predominated in all three asphaltenes and the average polycyclic aromatic hydrocarbon size was found to be six rings. The average molecular weight of the Buton asphaltene sample was found to be ca. 800 Da while those of the two petroleum asphaltene samples were approximately 600 Da. In comparison, the Buton asphaltene sample contained a much higher level of oxygen and sulfur, but a lower aromaticity than those of the two petroleum asphaltene samples. The use of liquid NMR in combination with DEPT was shown to provide an effective method for characterization and estimation of the molecular structures of asphaltenes, supported by MALDI-TOF mass spectra.

Funder

Australian Research Council

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3