Local Mechanical Anisotropy in Human Cranial Dura Mater Allografts

Author:

Sacks M. S.1,Jimenez Hamann M. C.1,Otan˜no-Lata S. E.1,Malinin T. I.2

Affiliation:

1. Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33124-0621

2. Department of Orthopædics and Rehabilitation, University of Miami, Coral Gables, FL 33124-0621

Abstract

Human cranial dura mater (CDM) allograft’s success as a repair biomaterial is partly due to its high mechanical strength, which facilitates its ability to form water-tight barriers and resist high in-vivo mechanical loads. Previous studies on CDM allograft mechanical behavior used large test specimens and concluded that the allograft was mechanically isotropic. However, we have quantified CDM microstructure using small angle light scattering (SALS) and found regions of well-aligned fibers displaying structural symmetry between the right and left halves (Jimenez et al., 1998). The high degree of fiber alignment in these regions suggests that they are mechanically anisotropic. However, identification of these regions using SALS requires irreversible tissue dehydration, which may affect mechanical properties. Instead, we utilized CDM structural symmetry to estimate the fiber architecture of one half of the CDM using computer graphics to flip the SALS fiber architecture map of the corresponding half about the plane of symmetry. Test specimens (20 mm × 4 mm) were selected parallel and perpendicular to the preferred fiber directions and subjected to uniaxial mechanical failure testing. CDM allografts were found to be locally anisotropic, having an ultimate tensile strength (UTS) parallel to the fibers of 12.76 ± 1.65 MPa, and perpendicular to the fibers of 5.21 ± 1.01 MPa (mean ± sem). These results indicate that uniaxial mechanical tests on large samples used in previous studies tended to mask the local anisotropic nature of the smaller constituent sections. The testing methods established in this study can be used in the evaluation of new CDM processing methods and post-implant allograft mechanical integrity.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3