Development of Operating Temperature Prediction Method Using Thermophysical Properties Change of Thermal Barrier Coatings

Author:

Fujii T.1,Takahashi T.1

Affiliation:

1. Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-0196, Japan

Abstract

Abstract Thermal barrier coatings (TBCs) have become an indispensable technology as the temperature of turbine inlet gas has increased. TBCs reduce the temperature of the base metal, but a reduction of internal pores by sintering occurs when using TBCs, and so the thermal barrier performance of TBCs is deteriorated. This in turn increases the temperature of the base metal and could shorten its lifespan. The authors have already clarified by laboratory acceleration tests that the deterioration of the thermal barrier performance of TBCs is caused by a decrease in the noncontact area that exists inside TBCs. This noncontact area is a slit space that exists between thin layers and is formed when TBCs are coated. This paper examines the relations between the decrease of the noncontact area and the exposure conditions, by measuring the thermal conductivity and the porosity of TBCs exposed to the temperatures that exist in an actual gas turbine, and derives the correlation with exposure conditions. As a result, very high correlations were found between the thermal conductivity and exposure conditions of TBCs, and between the porosity and exposure conditions. A very high correlation was also found between the thermal conductivity and porosity of TBCs. In addition, techniques for predicting TBC operating temperature were examined by using these three correlations. The correlation of diameter and exposure conditions of the gamma prime phase, which exists in nickel base super alloys, is used as a general method for predicting the temperature of parts in hot gas paths. This paper proposes two kinds of operating temperature prediction methods, which are similar to this general method. The first predicts the operating temperature from thermal conductivity measurements of TBCs before and after use, and the second predicts the operating temperature from thermal conductivity measurements of TBCs after use and porosity measurements before use. The TBC operating temperatures of a combustor that had been used for 12,000 hours with an actual E-class gas turbine were predicted by these two methods. The advantage of these methods is that the temperature of all parts with TBC can be predicted.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3