Effect of Squealer Geometry Arrangement on a Gas Turbine Blade Tip Heat Transfer

Author:

Azad Gm Salam1,Han Je-Chin1,Bunker Ronald S.2,Lee C. Pang3

Affiliation:

1. Department of Mechanical Engineering, Turbine Heat Transfer Lab, Texas A&M University, College Station, TX 77843-3123

2. GE R&D Center, Schenectady, NY 12301

3. GE Aircraft Engines, Cincinnati, OH 45215

Abstract

This study investigates the effect of a squealer tip geometry arrangement on heat transfer coefficient and static pressure distributions on a gas turbine blade tip in a five-bladed stationary linear cascade. A transient liquid crystal technique is used to obtain detailed heat transfer coefficient distribution. The test blade is a linear model of a tip section of the GE E3 high-pressure turbine first stage rotor blade. Six tip geometry cases are studied: (1) squealer on pressure side, (2) squealer on mid camber line, (3) squealer on suction side, (4) squealer on pressure and suction sides, (5) squealer on pressure side plus mid camber line, and (6) squealer on suction side plus mid camber line. The flow condition during the blowdown tests corresponds to an overall pressure ratio of 1.32 and exit Reynolds number based on axial chord of 1.1×106. Results show that squealer geometry arrangement can change the leakage flow and results in different heat transfer coefficients to the blade tip. A squealer on suction side provides a better benefit compared to that on pressure side or mid camber line. A squealer on mid camber line performs better than that on a pressure side.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference29 articles.

1. Bunker, R. S., and Bailey, J. C., 2000, “Blade Tip Heat Transfer and Flow With Chordwise Sealing Strips,” International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC), Honolulu, Hawaii, pp. 548–555.

2. Bunker, R. S., and Bailey, J. C., 2000, “An Experimental Study of Heat Transfer and Flow on a Gas Turbine Blade Tip with Various Tip Leakage Sealing Methods,” 4th ISHMT / ASME Heat and Mass Transfer Conference, India.

3. Heyes, F. J. G., Hodson, H. P., and Dailey, G. M., 1991, “The Effect of Blade Tip Geometry on the Tip Leakage Flow in Axial Turbine Cascades,” ASME Paper No. 91-GT-135.

4. Azad, G. S., Han, J. C., and Boyle, R. J., 2000, “Heat Transfer and Flow on the Squealer Tip of a Gas Turbine Blade,” ASME Paper No. 2000-GT-195.

5. Dunn, M. G., and Haldeman, C. W., 2000, “Time-Averaged Heat Flux for a Recessed Tip, Lip, and Platform of a Transonic Turbine Blade,” ASME Paper No. GT-0197.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3