Measurement of Frictional Properties of Aortic Stent Grafts and Their Delivery Systems

Author:

Chen Tianhao1,Lancaster Michael2,Lin Dawn S. Y.2,Doyle Matthew G.34,Forbes Thomas L.4,Amon Cristina H.35

Affiliation:

1. Division of Engineering Science, University of Toronto, 35 Street George Street, Toronto, ON M5S 1A4, Canada e-mail:

2. Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON M5S 3G8, Canada e-mail:

3. Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON M5S 3G8, Canada;

4. Division of Vascular Surgery, Peter Munk Cardiac Centre, University Health Network, University of Toronto, 200 Elizabeth Street, Eaton North 6-222, Toronto, ON M5G 2C4, Canada e-mail:

5. Institute of Biomaterials and Biomedical Engineering, University of Toronto, Rosebrugh Building, 164 College Street, Toronto, ON M5S3G9, Canada e-mail:

Abstract

Stent grafts are medical devices used to treat abdominal aortic aneurysms (AAAs) in endovascular aneurysm repair (EVAR). Computational and experimental models have been developed to study stent graft delivery and deployment during EVAR; however, frictional properties have not been taken into account in most previous studies. The objective of this study was to determine the coefficients of friction of three commercially available stent grafts (Cook Zenith, Medtronic Endurant, and Vascutek Anaconda), their delivery sheaths, a porcine aorta, and two mock arterial materials. Stent grafts were obtained and separated into stents, graft fabric, and sheaths. Using a custom-made friction measurement apparatus, the coefficients of friction were measured between five material pairs: (i) the stents and inner surface of the sheath, (ii) the graft fabric and inner surface of the sheath, (iii) the outer surface of the sheath and a porcine aorta, (iv) the outer surface of the sheath and three different polyvinyl alcohol (PVA) cryogels, and (v) the outer surface of the sheath and a polydimethylsiloxane (PDMS) sheet. The results show that the coefficients of friction between the graft fabric and the sheath were higher than those between the stents and the sheath. The PVA cryogels showed more comparable frictional properties to the porcine aorta than did the PDMS sheet, suggesting that PVA cryogels provide a more accurate approximation for the in vivo frictional properties. These results can be used to improve the accuracy of computational models for stent graft delivery and deployment and to select appropriate materials for vascular phantoms.

Publisher

ASME International

Subject

Biomedical Engineering,Medicine (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Medical Devices Tribology;Applications of Biotribology in Biomedical Systems;2024

2. A modeling framework for computational simulations of thoracic endovascular aortic repair;International Journal for Numerical Methods in Biomedical Engineering;2022-02-28

3. A review of the bio-tribology of medical devices;Friction;2021-06-09

4. Bio-tribology of Vascular Devices: A Review of Tissue/Device Friction Research;Biotribology;2021-03

5. Promising polymeric compounds for coronary stent graft membrane;Cardiovascular Therapy and Prevention;2020-07-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3