Specialized Strain Energy Functions for Modeling the Contribution of the Collagen Network (Waniso) to the Deformation of Soft Tissues

Author:

Anssari-Benam Afshin1,Pani Martino1,Bucchi Andrea1

Affiliation:

1. Cardiovascular Engineering Research Lab (CERL), School of Mechanical and Design Engineering, University of Portsmouth, Anglesea Road, Portsmouth PO1 3DJ, UK

Abstract

Abstract A popular framework in continuum mechanics modeling of soft tissues is the use of an additive split of the total strain energy function (W) into the contribution of the isotropic matrix (Wiso) and the anisotropic collagen fiber networks (Waniso): W = Wiso + Waniso. This paper presents specialized strain energy functions for the Waniso part of this additive split, in the form of Waniso(I4) or Waniso(I4, I6) for one or two fiber families, respectively, accounting for the deformation and contribution of the collagen fibers’ network. The models have their origins in the statistical mechanics treatment of chains network based on a non-Gaussian, a Gaussian, and a modified Gaussian approach. The models are applied to extant experimental stress-stretch data, across multi-scales from a single collagen molecule to the network ensemble, demonstrating an excellent agreement. Due to the direct physical structural basis of the model parameters and therefore their objectivity and uniqueness, these models are proposed as advantageous options next to the existing phenomenological continuum-based strain energy functions in the literature. In addition, and while not exploited in this paper, since the model parameters are inherent structural properties of the collagen molecular chains, they may be established a priori via imaging or molecular techniques. Therefore, the proposed models allow the important possibility of precluding the need for destructive mechanical tests and calibration a posteriori, instead of paving the way for predicting the mechanical behavior of the collagen network from pre-established structural parameters. These features render the proposed models as attractive choices for application in continuum-based modeling of collagenous soft tissues.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3