Feasibility Study of Abrasive-Waterjet Milling of Fiber-Reinforced Plastics

Author:

Hocheng H.1,Tsai H. Y.1,Shiue J. J.1,Wang B.2

Affiliation:

1. Department of Power, Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan, R. O. C.

2. Hsinchu, Taiwan, R. O. C.

Abstract

Composite materials are ideal for structural applications where high strength-to-weight and stiffness-to-weight ratios are required. Currently, linear cutting of composite materials has been increasingly practiced in industry and milling will be an important technology for wider applications of the materials and the benefit of onestation operation integrating linear and surface machining. Abrasive waterjet is adequate for machining of composite materials thanks to minimum thermal or mechanical stresses induced. The present paper discusses the feasibility of milling of composite materials by abrasive waterjet; it studies the basic mechanism of chip formation, single-pass milling, double-pass milling followed by the repeatable surface generation by multiple-pass milling. The mechanisms of material removal-deformation wear and cutting wear are studied first. High volume removal rate as well as a neat surface are desired. The major parameters affecting material removal rate are hydraulic pressure, standoff distance, traverse rate and abrasive flow rate. Dimensional analysis shows these significant parameters in machining and the results are compared with the theory of material erosion. The single-pass milling tests of carbon/epoxy are then conducted. The milling characteristics determining the generation of an extended surface are depth, width and width-to-depth ratio. The following dimensional analysis constructs the correlation between parameters and the surface characteristics. Based on the results of single-pass milling tests, the paper discusses the double-pass milling specifically considering the effect of lateral feed increments. The study then extends to six-pass milling. The obtained surface roughness from the sixpass milling is expressed as a function of the width-to-depth ratio and the lateral increment. With the knowledge of the volume removal rate and the surface roughness as well as the effects of the major process parameters, one can proceed to design a milling operation by abrasive waterjet.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3