Local Mesh Refinement and Coarsening Based on Analysis-Suitable T-Splines Surface and Its Application in Contact Problem

Author:

Wang Yue1,Yu Zuqing2,Lan Peng1,Lu Nianli3

Affiliation:

1. School of Mechatronics Engineering, Harbin Institute of Technology , Harbin 150001, Heilongjiang, China

2. College of Mechanical and Electrical Engineering, Hohai University , Changzhou 213002, Jiangsu, China

3. School of Mechatronics Engineering, Harbin Institute of Technology , Harbin, Heilongjiang 150001, China

Abstract

Abstract In contact analysis, reducing the computing time has been an issue under the premise of ensuring calculation accuracy around the region with violent stress changes. To improve computational efficiency for contact analysis in flexible multibody system, this paper proposes an adaptive local mesh refinement and coarsening approach based on analysis-suitable T-splines (ASTS). First, the kinematic model of thin plate is established based on analysis-suitable T-spline surface, and large deformation of flexible thin plate is described by the elastic model created by nonlinear Green–Lagrange strain. Second, to reduce computing time in contact analysis and ensure analysis accuracy, based on contact state and refinement distance, an effective adaptive local element mesh update method is proposed, which only refine locally on subject's refinement region and integrate redundant elements to reduce the degree-of-freedom (DOF) of system. Third, to analyze the system with varying mesh, a new solving algorithm with dynamic variables and geometry update routine is developed. Finally, performance of the proposed method in static and dynamic simulation is validated by four numerical examples. Results and consuming time of ASTS-based varying mesh prove the feasibility of the proposed method in contact problems.

Funder

Jiangsu Development and Reform Commission

Ministry of Education of the People's Republic of China

Ministry of Science and Technology of the People's Republic of China

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3