Impact of Thermal Source-Sink Arrangements on Buoyant Convection in a Nanofluid-Filled Annular Enclosure

Author:

Reddy N. Keerthi1,Sankar M.2,Jang Bongsoo1

Affiliation:

1. Department of Mathematical Sciences, Ulsan National Institute of Science and Technology , Ulsan 44919, South Korea

2. Department of General Requirements, University of Technology and Applied Sciences , Ibri 516, Oman

Abstract

Abstract This investigation is devoted to analyze the buoyancy-driven flow behavior and associated thermal dissipation rate in a nanofluid-filled annular region with five different single source-sink and three different dual source-sink arrangements along the vertical surfaces. The remaining region on the vertical boundaries and horizontal surfaces are kept adiabatic. Numerical simulations have been performed by employing the finite difference method. To analyze the impacts of different nanofluids, nanoparticle volume fraction, Rayleigh number, size, and arrangement of sources and sinks, the results are graphically represented through streamline and isotherm contours, thermal profiles, average Nusselt number, and cup-mixing temperature. The results showed that identifying an optimum location and length of source-sink with a proper selection of other control parameters can lead to enhanced thermal transport and thermal mixing in the enclosure. In particular, middle-middle thermally active location and placing source-sink separately on the vertical walls lead to the production of maximum heat transport compared to other single and dual source-sink arrangements, respectively. Also, among the two nanofluids considered in the current investigation, larger enhancement in thermal transport has been achieved for Cu-water nanofluid. The calculated enhancement ratio of the heat dissipation rate enhances with an increment in nanoparticle concentration.

Funder

The Research Council

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3