Solving Parametric Design Problems Requiring Configuration Choices

Author:

Ramaswamy R.1,Ulrich K.1,Kishi N.2,Tomikashi M.2

Affiliation:

1. Massachusetts Institute of Technology, Cambridge, MA 02139

2. Nissan Motor Company Ltd.

Abstract

The solution of many design problems involves two steps: the designer (1) creates a configuration by making component choices and (2) selects values for the parameters associated with the components in that configuration. For example, in automobile design a configuration decision may be to use disk brakes and a single turbocharger. Consequently, the parametric values to be chosen include disk radius and turbo inlet area. Mathematical models used to represent such problems and to evaluate chosen alternatives are often large, nonlinear, and involve both discrete and continuous variables. Because no single design algorithm will usually suffice in solving such problems, currently available computer tools are typically limited to a small range of problems or to parts of large problems. We believe a computer environment that allows flexible access to a diverse set of tools can help designers rapidly generate high quality solutions to a broad range of problems. In this paper, we test this belief on a design problem taken from a commercial auto manufacturer. We propose a framework for dealing with the general class of problems, and we describe the implementation of a novel design system that integrates math programming with knowledge-based and graph theoretic tools.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A User Study to Examine the Different Approaches in the Computer-Aided Design Process;Design, User Experience, and Usability. Practice and Case Studies;2019

2. Bio-surfaces and geometric references for mass customization in bio-interface design;Journal of Intelligent Manufacturing;2008-07-30

3. Parameter synthesis of higher kinematic pairs;Computer-Aided Design;2003-05

4. A Designer’s Spreadsheet;Journal of Mechanical Design;1997-03-01

5. Augmenting the house of quality with engineering models;Research in Engineering Design;1993-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3