Influence of Electric Current on the Wear Topography of Electrical Contact Surfaces

Author:

Zuo Xue1,Xie Wenxin1,Zhou Yuankai1

Affiliation:

1. School of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China

Abstract

Abstract Wind pitch slip ring consists of several circuits applied with changing electric current, which makes the wear mechanism extremely complicated. The aim of this paper is to study the influence of electric current on the wear behavior of friction pair using a ball-on-disc tribometer. The wear test was carried out with normal loads of 10 N and 15 N and applied electrical current ranging from 0.5 to 20 A. Wear topographies without electric current, with small (0.5–5 A) and large (5–20 A) electric current, were analyzed. The characteristic parameters (surface roughness, wear volume, and multifractal parameters) were used to comprehensively characterize the wear topography. The results indicate that the characteristic parameters of topography without current are the smallest. The main wear mechanism of friction pair without current is adhesion wear. The characteristic parameters fluctuate in a large range for the small current. The main wear mechanism of ball sample is adhesion wear with slightly arc ablation, but that of the disc sample is adhesion wear. The characteristic parameters increase with the electric current for the large current. The main wear mechanism of the ball sample is the interaction of adhesion wear and arc ablation, but that of disc sample is adhesion wear with slightly arc ablation. The electric current will aggravate the wear of friction pair and increase the singularity and complexity of the surface. The results are of great significance for guiding anti-wear design of wind pitch slip ring.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3