Affiliation:
1. Centro Internacional de Métodos Computacionales en Ingeniería, Instituto de Desarrollo Tecnológico para Industria Química, Universidad Nacional del Litoral - CONICET, Güemes 3450, 3000-Santa Fe, Argentina
Abstract
In this work, transient free surface flows of a viscous incompressible fluid are numerically solved through parallel computation. Transient free surface flows are boundary-value problems of the moving type that involve geometrical nonlinearities. In contrast to more conventional computational fluid dynamics problems, the computational flow domain is partially bounded by a free surface which is not known a priori, since its shape must be computed as part of the solution. In steady flow the free surface is obtained by an iterative process, but when the free surface evolves with time the problem is more difficult as it generates large distortions in the computational flow domain. The incompressible Navier-Stokes numerical solver is based on the finite element method with equal order elements for pressure and velocity (linear elements), and it uses a streamline upwind/Petrov-Galerkin (SUPG) scheme (Hughes, T. J. R., and Brooks, A. N., 1979, “A Multidimensional Upwind Scheme With no Crosswind Diffusion,” in Finite Element Methods for Convection Dominated Flows, ASME ed., 34. AMD, New York, pp. 19–35, and Brooks, A. N., and Hughes, T. J. R., 1982, “Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows With Particular Emphasis on the Incompressible Navier-Stokes Equations,” Comput. Methods Appl. Mech. Eng., 32, pp. 199–259) combined with a Pressure-Stabilizing/Petrov-Galerkin (PSPG) one (Tezduyar, T. E., 1992, “Stablized Finite Element Formulations for Incompressible Flow Computations,” Adv. Appl. Mech., 28, pp. 1–44, and Tezduyar, T. E., Mittal, S., Ray, S. E., and Shih, R., 1992, “Incompressible Flow Computations With Stabilized Bilinear and Linear Equal Order Interpolation Velocity-Pressure Elements,” Comput. Methods Appl. Mech. Eng., 95, pp. 221–242). At each time step, the fluid equations are solved with constant pressure and null viscous traction conditions at the free surface and the velocities obtained in this way are used for updating the positions of the surface nodes. Then, a pseudo elastic problem is solved in the fluid domain in order to relocate the interior nodes so as to keep mesh distortion controlled. This has been implemented in the PETSc-FEM code (PETSc-FEM: a general purpose, parallel, multi-physics FEM program. GNU general public license (GPL), http://www.cimec.org.ar/petscfem) by running two parallel instances of the code and exchanging information between them. Some numerical examples are presented.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献