Symbolic and Numeric Kernel Division for Graphics Processing Unit-Based Finite Element Analysis Assembly of Regular Meshes With Modified Sparse Storage Formats

Author:

Sanfui Subhajit1,Sharma Deepak1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology, Guwahati, Assam 781039, India

Abstract

Abstract This paper presents an efficient strategy to perform the assembly stage of finite element analysis (FEA) on general purpose graphics processing units (GPUs). This strategy involves dividing the assembly task using symbolic and numeric kernels, and thereby reducing the complexity of the standard single-kernel assembly approach. Two sparse storage formats based on the proposed strategy are also developed by modifying the existing sparse storage formats with the intention of removing the degrees-of-freedom-based redundancies in the global matrix. The inherent problem of race condition is resolved through the implementation of coloring and atomics. The proposed strategy is compared with the state-of-the-art GPU-based and central processing unit (CPU)-based assembly techniques. These comparisons reveal a significant number of benefits in terms of reducing storage space requirements and execution time and increasing performance (GFLOPS). Moreover, using the proposed strategy, it is found that the coloring method is more effective compared to the atomics-based method for the existing as well as the modified storage formats.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Reference35 articles.

1. Evolutionary and GPU Computing for Topology Optimization of Structures;Ram;Swarm Evol. Comput.,2017

2. GPU—Based Topology Optimization Using Matrix-Free Conjugate Gradient Finite Element Solver With Customized Nodal Connectivity Storage;Ratnakar,2020

3. SIMP-Based Structural Topology Optimization Using Unstructured Mesh on GPU;Ratnakar,2020

4. GPU Acceleration for FEM-Based Structural Analysis;Georgescu;Arch. Comput. Methods Eng.,2013

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3