Mixed-Mode Fracture Criteria for Reliability Analysis and Design With Structural Ceramics

Author:

Shetty D. K.1

Affiliation:

1. Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112

Abstract

Increasing use of ceramics in structural applications has led to the development of a probabilistic design methodology that combines three elements: linear elastic fracture mechanics theory that relates strengths of ceramics to size, shape, and orientation of critical flaws, a characteristic flaw size distribution function that accounts for the size effect on strength via the weakest-link concept, and a time-dependent strength caused by subcritical crack growth or other mechanisms. This paper reviews recent research that has been focused on the first of the above three elements, the investigation of fracture criteria for arbitrarily oriented flaws in ceramics, i.e., the mixed-mode fracture problem in linear elastic fracture mechanics theory. Experimental results obtained with two-dimensional through cracks and three-dimensional surface (indentation) cracks are summarized and compared to mixed-mode fracture criteria. The effects of material microstructure and the stress state on mixed-mode fractures are discussed. The application of mixed-mode fracture criteria in reliability analysis is illustrated for several simple stress states in the absence of time-dependent strength degradation.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3