Affiliation:
1. Department of Mechanical Engineering, Ohio State University, 206 W. 18th Avenue, Columbus, OH 43210-1107
Abstract
In order to provide analytical eigenvalue estimates for general continuous gyroscopic systems, this paper presents a perturbation analysis to determine approximate eigenvalue loci and stability conclusions in the vicinity of critical speeds and zero speed. The perturbation analysis relies on a formulation of the general continuous gyroscopic system eigenvalue problem in terms of matrix differential operators and vector eigenfunctions. The eigenvalue λ appears only as λ2 in the formulation, and the smoothness of λ2 at the critical speeds and zero speed is the essential feature. First-order eigenvalue perturbations are determined at the critical speeds and zero speed. The derived eigenvalue perturbations are simple expressions in terms of the original mass, gyroscopic, and stiffness operators and the critical-speed/zero-speed eigenfunctions. Prediction of whether an eigenvalue passes to or from a region of divergence instability at the critical speed is determined by the sign of the eigenvalue perturbation. Additionally, eigenvalue perturbation at the critical speeds and zero speed yields approximations for the eigenvalue loci over a range of speeds. The results are limited to systems having one independent eigenfunction associated with each critical speed and each stationary system eigenvalue. Examples are presented for an axially moving tensioned beam, an axially moving string on an elastic foundation, and a rotating rigid body. The eigenvalue perturbations agree identically with exact solutions for the moving string and rotating rigid body.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献