Evaluating the Effectiveness of Mine Safety Enforcement Actions in Forecasting the Lost-Days Rate at Specific Worksites

Author:

Gernand Jeremy M.1

Affiliation:

1. Department of Energy and Mineral Engineering, The Pennsylvania State University, University Park, PA 16802 e-mail:

Abstract

The safety of mining in the United States has improved significantly over the past few decades, although it remains one of the more dangerous occupations. Following the Sago mine disaster in January 2006, federal legislation (The Mine Improvement and New Emergency Response [MINER] Act of 2006) tightened regulations and sought to strengthen the authority and safety-inspection practices of the Mine Safety and Health Administration (MSHA). While penalties and inspection frequency have increased, understanding of what types of inspection findings are most indicative of serious future incidents is limited. The most effective safety management and oversight could be accomplished by a thorough understanding of what types of infractions or safety inspection findings are most indicative of serious future personnel injuries. However, given the large number of potentially different and unique inspection findings, varied mine characteristics, and types of specific safety incidents, this question is complex in terms of the large number of potentially relevant input parameters. New regulations rely on increasing the frequency and severity of infraction penalties to encourage mining operations to improve worker safety, but without the knowledge of which specific infractions may truly be signaling a dangerous work environment. This paper seeks to inform the question: What types of inspection findings are most indicative of serious future incidents for specific types of mining operations? This analysis utilizes publicly available MSHA databases of cited infractions and reportable incidents. These inspection results are used to train machine learning Classification and Regression Tree (CART) and Random Forest (RF) models that divide the groups of mines into peer groups based on their recent infractions and other defining characteristics with the aim of predicting whether or not a fatal or serious disabling injury is more likely to occur in the following 12-month period. With these characteristics available, additional scrutiny may be appropriately directed at those mining operations at greatest risk of experiencing a worker fatality or disabling injury in the near future. Increased oversight and attention on these mines where workers are at greatest risk may more effectively reduce the likelihood of worker deaths and injuries than increased penalties and inspection frequency alone.

Publisher

ASME International

Subject

Mechanical Engineering,Safety Research,Safety, Risk, Reliability and Quality

Reference16 articles.

1. An Evaluation of Safety Performance Measures for Construction Projects;J. Constr. Res.,2003

2. Evaluating Equivalence of the Safe Performance Index (SPI) to a Traditional Risk Analysis;Open J. Saf. Sci. Technol.,2012

3. A System Dynamics Analysis of the Westray Mine Disaster;Syst. Dyn. Rev.,2003

4. Underground Coal Mine Safety Performance: A Decade of Challenges and Improvements;Coal Age,2012

5. Explaining and Predicting Workplace Accidents Using Data-Mining Techniques;Reliab. Eng. Syst. Saf.,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3