Quantifying Loss Mechanisms in Turbine Tip Shroud Cavity Flows

Author:

Palmer Timothy R.1,Tan Choon S.2,Zuniga Humberto3,Little David4,Montgomery Matthew5,Malandra Anthony3

Affiliation:

1. Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 31-267, Cambridge, MA 02139

2. Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 31-267, Cambridge, MA 02139 e-mail:

3. Siemens Energy, Inc., 4400 Alafaya Trail, Orlando, FL 32826 e-mail:

4. Siemens Energy, Inc., 4400 Alafaya Trail, Orlando, FL 32826

5. Siemens Energy, Inc., 1680 South Central Boulevard, Suite 103, Jupiter, FL 33458-7395

Abstract

Numerical calculations, steady as well as unsteady, of flow in a turbine stage with a tip shroud cavity elucidate that the loss-generating flow features consist of tip seal leakage jet, the interaction of cavity exit flow with main flow, the partially recirculating cavity inlet flow interaction with vane wakes, and injection of leakage flow into the shroud cavity. The first two flow features, namely, the tip seal leakage flow and mixing of cavity exit flow with main flow, dominate while the injection of leakage flow plays an indirect role in affecting the loss generation associated with cavity exit flow. The tip shroud cavity flow essentially consists of a system of toroidal vortices, the configuration of which is set by the cavity geometry and changes when subject to unsteady vane–rotor interaction. The role which the toroidal vortices play in setting the cavity inlet recirculating flow pattern and loss generation is delineated. It is suggested that there exists a link between the inlet cavity sizing and the toroidal vortical structure. The computed results appear to indicate that the main flow path approximately perceives the presence of the tip shroud cavity as a sink–source pair; as such a flow model based on this approximation is formulated. Loss variations with tip gap height and leakage flow injection are assessed. Results show that the expected loss due to mixing has a functional dependence on the square of the difference in their velocity magnitude and swirl. The tip seal leakage jet loss scales approximately linearly with the corrected mass flow rate per unit area over the range of tip gaps investigated.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3