Application-Specific Learning Curve With a Modern Computer-Assisted Orthopedic Surgery System for Joint Arthroplasty

Author:

Dai Yifei1,Kusuma Sharat1,Greene Alexander T.1,Fan Wen1,Jung Amaury2,Hamad Cyril2,Bras Guillaume2,Angibaud Laurent1

Affiliation:

1. Exactech Inc., 2320 NW 66th Ct., Gainesville, FL 32653

2. Blue Ortho, 6, Allée de Bethléem, Gières, FR 38610

Abstract

Abstract A commonly acknowledged barrier for the adoption of new computer-assisted orthopedic surgery (CAOS) technologies relates to a perceived long and steep learning curve. However, this perception has not been objectively tested with the consideration of surgeon-specific learning approaches. This study employed the cumulative sum control chart (CUSUM) to investigate individual surgeon's learning of CAOS technology by monitoring the stability of the surgical process regarding surgical time. Two applications for total knee arthroplasty (TKA) and two applications for total shoulder arthroplasty (TSA) provided by a modern CAOS system were assessed with a total of 21 surgeons with different levels of previous CAOS experience. The surgeon-specific learning durations identified by CUSUM method revealed that CAOS applications with “full guidance” (i.e., those that offer comprehensive guidance, full customization, and utilize CAOS-specific instrumentation) required on average less than ten cases to learn, while the streamlined application designed as a CAOS augmentation of existing mechanical instrumentation demonstrated a minimal learning curve (less than three cases). During the learning phase, the increase in surgical time was found to be moderate (approximately 15 min or less) for the “full guidance” applications, while the streamlined CAOS application only saw a clinically negligible time increase (under 5 min). The CUSUM method provided an objective and consistent measurement on learning, and demonstrated, contrary to common perception, a minimal to modest learning curve required by the modern CAOS system studied.

Publisher

ASME International

Subject

Biomedical Engineering,Medicine (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3