The Application of a Homogeneous Half-Space Model in the Analysis of Endothelial Cell Micropipette Measurements

Author:

Theret D. P.1,Levesque M. J.1,Sato M.1,Nerem R. M.2,Wheeler L. T.1

Affiliation:

1. Department of Mechanical Engineering, University of Houston, Houston, TX 77004

2. Biomechanics Laboratory, Georgia Institute of Technology, Atlanta, GA 30332-0405

Abstract

Experimental studies have shown that endothelial cells which have been exposed to shear stress maintain a flattened and elongated shape after detachment. Their mechanical properties, which are studied using the micropipette experiments, are influenced by the level as well as the duration of the shear stress. In the present paper, we analyze these mechanical properties with the aid of two mathematical models suggested by the micropipette technique and by the geometry peculiar to these cells in their detached post-exposure state. The two models differ in their treatment of the contact zone between the cell and the micropipette. The main results are expressions for an effective Young’s modulus for the cells, which are used in conjunction with the micropipette data to determine an effective Young’s modulus for bovine endothelial cells, and to discuss the dependence of this modulus upon exposure to shear stress.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 317 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3