On Cutting Temperature Measurement During Titanium Machining With an Atomization-Based Cutting Fluid Spray System

Author:

Hoyne Alexander C.1,Nath Chandra2,Kapoor Shiv G.3

Affiliation:

1. Department of Mechanical Science and Engineering, University of Illinois at Urbana–Champaign, 1206 W. Green Street, Urbana, IL 61801 e-mail:

2. Post Doctorate Research Associate Department of Mechanical Science and Engineering, University of Illinois at Urbana–Champaign, 1206 W. Green Street, Urbana, IL 61801 e-mail:

3. Professor Department of Mechanical Science and Engineering, University of Illinois at Urbana–Champaign, 1206 W. Green Street, Urbana, IL 61801 e-mail:

Abstract

The poor thermal conductivity and low elongation-to-break ratio of titanium lead to the development of extreme temperatures (in excess of 550 °C) localized in the tool–chip interface during machining of its alloys. At such temperature level, titanium becomes highly reactive with most tool materials resulting in accelerated tool wear. The atomization-based cutting fluid (ACF) spray system has recently been demonstrated to improve tool life in titanium machining due to good cutting fluid penetration causing the temperature to be reduced in the cutting zone. In this study, the cutting temperatures are measured both by inserting thermocouples at various locations of the tool–chip interface and the tool–work thermocouple technique. Cutting temperatures for dry machining and machining with flood cooling are also characterized for comparison with the ACF spray system temperature data. Findings reveal that the ACF spray system more effectively reduces cutting temperatures over flood cooling and dry conditions. The tool–chip friction coefficient indicates that the fluid film created by the ACF spray system also actively penetrates the tool–chip interface to enhance lubrication during titanium machining.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3