Inverse Design of Composite Turbine Blade Circular Coolant Flow Passages

Author:

Chiang T.-L.1,Dulikravich G. S.1

Affiliation:

1. Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX 78712

Abstract

An inverse design and optimization method is developed to determine the proper size and location of the circular holes (coolant flow passages) in a composite turbine blade. The temperature distributions specified on the outer blade surface and on the surfaces of the inner holes can be prescribed a priori. In addition, heat flux distribution on the outer blade surface can be prescribed and iteratively enforced using optimization procedures. The prescribed heat flux distribution on the outer surface is iteratively approached by using the Sequential Unconstrained Minimization Technique (SUMT) to adjust the sizes and locations of the initially guessed circular holes. During each optimization iteration, a two-dimensional heat conduction equation is solved using direct Boundary Element Method (BEM) with linear temperature singularity distribution. For manufacturing purposes the additional constraints are enforced assuring the minimal prescribed blade wall thickness and spacing between the walls of two neighboring holes. The method is applicable to both single material (homogeneous) and coated (composite) turbine blades. Three different cases were tested to prove the feasibility and the accuracy of the method.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Topological Asymptotic Expansion for a Thermal Problem;Applied Mathematics & Optimization;2020-03-18

2. An inverse method of designing the cooling passages of turbine blades based on the heat adjoint equation;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;2014-01-09

3. Inverse design of internally cooled turbine blades based on the heat adjoint equation;Inverse Problems in Science and Engineering;2012-06-11

4. An inverse method for determining material properties of a multi-layer medium by boundary element method;International Journal of Solids and Structures;2001-11

5. Inverse optimal design of cooling conditions for continuous quenching processes;International Journal for Numerical Methods in Engineering;2001-05-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3