Experimental Investigation of a Flat-Plate Oscillating Heat Pipe With Groove-Enhanced Minichannels

Author:

Rhodes Matthew J.1,Thompson Scott M.2

Affiliation:

1. Department of Mechanical Engineering, Mississippi State University, Mississippi State, MS 39762

2. Alan Levin Department of Mechanical and Nuclear Engineering, Kansas State University, 3002 Rathbone Hall, 1701B Platt Street, Manhattan, KS 66506

Abstract

Abstract The thermal and capillary performance of a groove-enhanced, or “microchannel-embedded,” flat-plate oscillating heat pipe (MC FP-OHP) was experimentally investigated while varying heating width, orientation, working fluid and operating temperature. The copper MC FP-OHP possessed two layers of 1.02 × 1.02 mm2 square channels, with the center 14 channels possessing two embedded microchannels (0.25 × 0.13 mm2) aligned coaxially with the primary minichannels. A FP-OHP without embedded microchannels, but with deeper minichannels (DC FP-OHP), was also tested for comparison. The FP-OHPs were filled with Novec 7200 or water (both at 80% ± 2% by volume), and the heating widths were varied between full-width and localized configurations: 38.71 cm2 and 14.52 cm2, respectively. Experimental results demonstrate that the MC FP-OHP is significantly less sensitive to operating orientation and can perform with less detriment as heat flux increases. The MC FP-OHP has a lower startup heating requirement and provides more fluid wetting along the FP-OHP structure—which is advantageous for pumping liquid from the evaporator to the condenser. The MC FP-OHP has enhanced convective heat transfer during operation, as it was observed to have similar or lower thermal resistances to that of the DC FP-OHP for a wide range of operating conditions. The groove-enhanced minichannel within the MC FP-OHP also provides for enhanced heat transfer because there being more thin-film evaporation sites and vapor–liquid mixing between the minichannel and microchannels.

Funder

Mississippi State University

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3