Affiliation:
1. Department of Mechanical Engineering, Mississippi State University, Mississippi State, MS 39762
2. Alan Levin Department of Mechanical and Nuclear Engineering, Kansas State University, 3002 Rathbone Hall, 1701B Platt Street, Manhattan, KS 66506
Abstract
Abstract
The thermal and capillary performance of a groove-enhanced, or “microchannel-embedded,” flat-plate oscillating heat pipe (MC FP-OHP) was experimentally investigated while varying heating width, orientation, working fluid and operating temperature. The copper MC FP-OHP possessed two layers of 1.02 × 1.02 mm2 square channels, with the center 14 channels possessing two embedded microchannels (0.25 × 0.13 mm2) aligned coaxially with the primary minichannels. A FP-OHP without embedded microchannels, but with deeper minichannels (DC FP-OHP), was also tested for comparison. The FP-OHPs were filled with Novec 7200 or water (both at 80% ± 2% by volume), and the heating widths were varied between full-width and localized configurations: 38.71 cm2 and 14.52 cm2, respectively. Experimental results demonstrate that the MC FP-OHP is significantly less sensitive to operating orientation and can perform with less detriment as heat flux increases. The MC FP-OHP has a lower startup heating requirement and provides more fluid wetting along the FP-OHP structure—which is advantageous for pumping liquid from the evaporator to the condenser. The MC FP-OHP has enhanced convective heat transfer during operation, as it was observed to have similar or lower thermal resistances to that of the DC FP-OHP for a wide range of operating conditions. The groove-enhanced minichannel within the MC FP-OHP also provides for enhanced heat transfer because there being more thin-film evaporation sites and vapor–liquid mixing between the minichannel and microchannels.
Funder
Mississippi State University
Subject
Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献