Study on Limit Load of Orthotropic Cylindrical Pipe Under Different Combined Load Conditions

Author:

Xu Min1,Wen Jian-bin1,Zhao Yu-jie1,Zhou Chang-Yu1,He Xiao-hua1

Affiliation:

1. School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, China; Jiangsu Key Lab of Design and Manufacture of Extreme Pressure Equipment, Nanjing 211816, China

Abstract

Abstract In engineering, many pressure pipes are made of steels with good plasticity, which are subject to internal pressure, axial force, shear force, bending moment, torsion moment or their combined loads. The plastic limit load is an important indicator of the load capacity of pressure pipe. According to Hill yield function, the theoretical solutions of limit load of orthotropic cylindrical pipe under various combined loads under internal pressure, axial force, shear force, torsion moment, and bending moment have been derived on the basis of elastic perfectly plastic constitutive model. The effects of radial stress on different combined limit loads of cylindrical pipe are explored and these results show that the radial stress should be considered about the limit load calculation especially for thick-walled cylindrical pipe. The interactions of various load combination are analyzed in detail and drawn with the interaction curves. For isotropic cylindrical pipe, the limit load increases with the yield strength. For the orthotropic cylindrical pipe, the limit loads of cylindrical pipe under axial force, bending moment, shear force, and torsion moment without internal pressure are only related to the axial yield strength. The limit bending moment is mainly dependent on the axial yield strength when internal pressure is lower, while the impact of the circumferential yield strength of orthotropic cylindrical pipe is obvious when internal pressure is some higher. When the axial yield strength of orthotropic cylindrical pipe is the same, the circumferential yield strength can enhance the limit axial load, limit torsion moment, and limit shear load. Under the different load conditions including internal pressure, bending moment, axial force, shear force, and torsion moment or their combined loads, the relation of limit bending moment with yield strength ratio is diverse, which is decide by the load combination, the circumferential yield strength, and the axial yield strength.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3