Deposition of a Silicon Carbide Reinforced Metal Matrix Composite (P25) Layer Using CO2 Laser

Author:

Wai Yip Mum1,Barnes Stuart2,Aly Diaa Mohmmed Sarhan Ahmed3

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering and Built Environment, Tunku Abdul Rahman University College, Jalan Genting Kelang, Setapak, Kuala Lumpur 53300, Malaysia e-mail:

2. Mem. ASME Warwick Manufacturing Group, International Manufacturing Centre, University of Warwick, Conventry CV4 7AL, UK e-mail:

3. Center of Advanced Manufacturing and Material Processing (AMMP), Department of Mechanical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia e-mails: ;

Abstract

The objective of this research was to deposit a silicon carbide (SiC) reinforced layer of P25 (iron-based matrix material) on substrate material surface using CO2 laser. Two experiments using CO2 laser were carried out in this research. In the first experiment set, a gravity feed system was used with one powder feed containing different percentages of SiC particles and iron-based powder. In the second experiment set, preplaced powder was placed on substrate material surface. According to the experimental results, only few SiC particles were found in the clad matrix in the first experiment, and no SiC particles were found in the second experiment. A high microhardness value was noted in the SiC clad (above 1000 HV) in the first experiment compared to the second experiment with hardness values ranging from 200 HV to 700 HV. This was due to the high precipitation of carbide particles in the clad material during the first experiment. A comparison of the two different experiments signifies that the first one was the best because a more uniform layer with less porosity was produced.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3