Cost Optimization and Flexibility Analysis for the Liquefaction of an Associated Natural Gas Stream

Author:

Eini Saeed12,Kontogeorgis Georgios M.2,Rashtchian Davood3

Affiliation:

1. Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran;

2. Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark

3. Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran 11365-9465, Iran

Abstract

Abstract Liquefaction and then transportation to the market is one of the promising options for the utilization of associated natural gas resources which are produced in oil fields. However, the flow of such resources is normally unsteady. Additionally, the associated gas in one oil field may exhaust in a few years and the liquefaction plant should be moved to another oil field with different specifications. In order to tackle such challenges, liquefaction systems not only must be optimally designed and operated but also should be flexible with respect to the gas flow fluctuations. The flexibility analysis of such processes is usually ignored in the optimization studies. In this research, first, the economic performance of two small-scale liquefaction processes (a single mixed-refrigerant process, SMR, and a nitrogen expander process) was optimized and compared. The results showed that the SMR process is economically more attractive (49% lower lifecycle cost compared to the nitrogen expander process). As a post-optimization step, flexibility analysis was performed to investigate the ability of optimal designs in overcoming gas flow fluctuations. For this purpose, five-thousand feed samples with different flowrate and methane content were supposed which formed a feasibility-check region. The results showed that with respect to the design constraints, the optimal SMR process is more flexible and feasibly operates in the entire region. However, the nitrogen expander process cannot feasibly operate for the gas feed with high flowrate and low methane content.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3