Considering Link Flexibility in the Dynamic Synthesis of Closed-Loop Mechanisms: A General Approach

Author:

Shafei A. M.1,Shafei H. R.1

Affiliation:

1. Department of Mechanical Engineering, Shahid Bahonar University of Kerman, Kerman 76188-68366, Iran

Abstract

Abstract This paper has focused on the dynamic analysis of mechanisms with closed-loop configuration while considering the flexibility of links. In order to present a general formulation for such a closed-loop mechanism, it is allowed to have any arbitrary number of flexible links in its chain-like structure. The truncated assumed modal expansion technique has been used here to model link flexibility. Moreover, due to the closed nature of the mentioned mechanism, which imposes finite holonomic constraints on the system, the appearance of Lagrange multipliers in the dynamic motion equations obtained by Lagrangian formulation is unavoidable. So, the Gibbs-Appell (G-A) formulation has been applied to get rid of these Lagrange multipliers and to ease the extraction of governing motion equations. In addition to the finite constraints, the impulsive constraints, which originate from the collision of system joints with the ground, have also been formulated here using the Newton's kinematic impact law. Finally, to stress the generality of the proposed formulation in deriving and solving the motion equations of complex closed-loop mechanisms in both the impact and non-impact conditions, the computer simulation results for a mechanism with four flexible links and closed-loop configuration have been presented.

Publisher

ASME International

Subject

General Engineering

Reference27 articles.

1. A Contact Force Model With Hysteresis Damping for Impact Analysis of Multibody Systems;Lankarani;ASME J. Mech. Des.,1990

2. A Systematic Method for the Hybrid Dynamic Modeling of Open Kinematic Chains Confined in a Closed Environment;Shafei;Multibody System Dynamics,2016

3. Oblique Impact of Multi-Flexible-Link Systems;Shafei;J. Vib. Control,2018

4. Dynamic Behavior of Flexible Multiple Links Captured Inside a Closed Space;Shafei;ASME J. Comput. Nonlinear Dyn.,2016

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3