Experimental Investigation and Simulation of a Boeing 747 Auxiliary Power Unit

Author:

Skliros Christos1,Ali Fakhre1,Jennions Ian1

Affiliation:

1. Integrated Vehicle Health Management Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK

Abstract

Abstract Auxiliary power units (APUs) are a major driver of maintenance on civil aircraft. However, experimental data and performance simulations are rarely seen in public domain literature. While there is recourse to aircraft engine experience, this does not address the loading and the failure modes of an APU. This work aims to add to the literature, by experimentally investigating a Boeing 747 APU, collecting data under various power settings and ambient conditions, and using these data to calibrate a simple simulation model. This simulation model will subsequently be used to explore failure modes in the APU and hence what sensors may be needed for health monitoring purposes in future work. In this paper, a Boeing 747 APU rig development process and the testing strategy are presented. The rig is validated through a process that includes uncertainty analysis, repeatability tests, consistency tests, and comparison of the collected data with the calibrated simulation model. The results from the rig's validation indicate that the data collected from the APU is independent of its running time or the order of loading cycles imposed on it, i.e., the results are path independent. Changes in pneumatic and electrical power result in small changes in the rotational speed despite the fact that the rotational speed should remain constant. The rotational speed shows a slightly increasing trend when the extracted power rises, and this affects the APU thermodynamic characteristics. This work has resulted in a calibrated simulation model that will be further used in examining fault mode scenarios, as injecting these directly into the rig is seen as high risk.

Funder

The Boeing Company

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference37 articles.

1. A Better Approach to Airline Costs,2017

2. Fuel Efficiency of Commercial Aircraft: An Overview of Historical and Future Trends,2005

3. Airline Maintenance Cost Executive Summary,2019

4. Model-Based Diagnostics for an Aircraft Auxiliary Power Unit,2002

5. Aircraft APU Emissions at Zurich Airport,2005

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3