Emission Measurements and CH* Chemiluminescence of a Staged Combustion Rig for Stationary Gas Turbine Applications

Author:

Lamont Warren G.12,Roa Mario2,Meyer Scott E.3,Lucht Robert P.4

Affiliation:

1. NSERC Graduate Fellow

2. Maurice J. Zucrow Laboratories, School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN 47907

3. Maurice J. Zucrow Laboratories, Purdue University, West Lafayette, IN 47907

4. School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

Abstract

An optically accessible combustion rig was constructed to study the combustion characteristics of a reactive jet in a vitiated crossflow. The rig features two staged combustion zones. The main combustion zone is a swirl stabilized dump combustor. The second combustion zone, which is axially downstream from the main combustion zone, is formed by a transverse jet injecting either fuel or a premixed fuel/air mixture into the vitiated stream. The rig was designed to investigate the transverse jet conditions, equivalence ratio, and momentum ratios that produce low NOx and give an adequate temperature rise before the simulated high pressure turbine. A water-cooled sampling probe extracts exhaust gas downstream for emission measurements. As a baseline, the main combustion zone was fired without the transverse jet and the results compare closely to the work of previous researchers. The emission survey with the transverse jet found several conditions that show a benefit of staging compared to the baseline of firing only the main combustion zone. The flame structure from the transverse jet was captured using high speed CH* chemiluminescence, which shows the extent of the flame front and its penetration depth into the vitiated stream. The chemiluminescence images were averaged and compared to the Holdeman correlation, which showed good agreement for injection with fuel only but poorer agreement when premixed.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference32 articles.

1. A Rational Framework for Electricity Policy;Carr;J. Policy Engagement

2. MIT Energy Initiative, 2010, “The Future of Natural Gas: An Interdisciplinary MIT Study,” Massachusetts Institute of Technology, Cambridge, MA.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3