Automated Generation of Linkage Loop Equations for Planar One Degree-of-Freedom Linkages, Demonstrated up to 8-Bar

Author:

Parrish Brian E.1,Michael McCarthy J.1,Eppstein David2

Affiliation:

1. Robotics and Automation Laboratory, Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697 e-mail:

2. Information and Computer Sciences, Department of Computer Science, University of California, Irvine, CA 92697 e-mail:

Abstract

In this paper, we present an algorithm that automatically creates the linkage loop equations for planar one degree of freedom, 1DOF, linkages of any topology with revolute joints, demonstrated up to 8 bar. The algorithm derives the linkage loop equations from the linkage adjacency graph by establishing a rooted cycle basis through a single common edge. Divergent and convergent loops are identified and used to establish the fixed angles of the ternary and higher links. Results demonstrate the automated generation of the linkage loop equations for the nine unique 6-bar linkages with ground-connected inputs that can be constructed from the five distinct 6-bar mechanisms, Watt I–II and Stephenson I–III. Results also automatically produced the loop equations for all 153 unique linkages with a ground-connected input that can be constructed from the 71 distinct 8-bar mechanisms. The resulting loop equations enable the automatic derivation of the Dixon determinant for linkage kinematic analysis of the position of every possible assembly configuration. The loop equations also enable the automatic derivation of the Jacobian for singularity evaluation and tracking of a particular assembly configuration over the desired range of input angles. The methodology provides the foundation for the automated configuration analysis of every topology and every assembly configuration of 1DOF linkages with revolute joints up to 8 bar. The methodology also provides a foundation for automated configuration analysis of 10-bar and higher linkages.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3