Primary Resonance in a Weakly Forced Oscillator With Both Parametric Damping and Stiffness

Author:

Ardister Jamal1,Afzali Fatemeh1,Feeny Brian F.1

Affiliation:

1. Michigan State University Department of Mechanical Engineering, , East Lansing, MI 48824

Abstract

Abstract We study the primary resonance of a parametrically damped Mathieu equation with direct excitation. Potential applications include wind-turbine blade vibration with cyclic stiffening and aeroelastic effects, which may induce parametric damping, and devices with designed cyclic damping for resonance manipulation. The parametric stiffness, parametric damping, and the direct forcing all have the same excitation frequency, with phase parameters between these excitation sources. The parametric amplification at primary resonance is examined by applying the second-order method of multiple scales. With parametric stiffness and direct excitation, it is known that there is a primary parametric resonance that is an amplifier under most excitation phases, but can be a slight suppressor in a small range of phases. The parametric damping is shown to interact with the parametric stiffness to further amplify, or suppress, the resonance amplitude relative to the resonance under parametric stiffness. The effect of parametric damping without parametric stiffness is to shift the resonant frequency slightly, while inducing less significant resonance amplification. The phase of the parametric damping excitation, relative to the parametric stiffness, has a strong influence on the amplification or suppression characteristics. There are optimal phases of both the direct excitation and the parametric damping for amplifying or suppressing the resonance. The effect of the strength of parametric damping is also studied. Numerical simulations validate the perturbation analysis.

Funder

National Science Foundation

Publisher

ASME International

Reference56 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3