Seepage Induced Soil Failure and its Mitigation During Suction Caisson Installation in Silt

Author:

Wang Lizhong1,Yu Luqing1,Guo Zhen2,Wang Zhenyu3

Affiliation:

1. e-mail:

2. e-mail:  College of Civil Engineering and Architecture and Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, Zhejiang, China

3. College of Civil Engineering and Architecture, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, Zhejiang, China e-mail:

Abstract

Suction caisson is an advantaged foundation option for offshore wind turbines in sandy and clayey soils. In this work, a series of model tests were conducted to investigate the installation behavior of a suction caisson in silty soils. The test results showed that the total soil resistance to the caisson increased steadily with penetration depth in the beginning of the suction-assisted penetration (SP) process, but rose slowly or remained constant after reaching a certain depth with excessive soil heave. This failure mechanism, which was quite different from that identified in sandy or clayey soils, was caused by the seepage induced silt soil failure in the caisson, such as erosion, liquefaction or piping, with reducing internal side friction and tip resistance. To suppress this type of failure, a special filtration method was introduced to help caisson penetration. The test results showed that such filtration technique had the advantage of reducing the height of soil heave and prevent seepage induced soil failure in the silt, but also suppress the under pressure effects on reducing the soil resistance. Numerical simulations were also performed to aid in understanding the observed test results and mitigation mechanisms.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3