Sensitivity of Lyapunov Exponents in Design Optimization of Nonlinear Dampers

Author:

Tamer Aykut1,Masarati Pierangelo2

Affiliation:

1. Department of Aerospace Science and Technology, Politecnico Di Milano, Milano 20156, Italy e-mail:

2. Professor Department of Aerospace Science and Technology, Politecnico Di Milano, Milano 20156, Italy e-mail:

Abstract

This work presents how the analytical sensitivity of Lyapunov characteristic exponents (LCEs) can be used in the design of nonlinear dampers, which are frequently utilized to stabilize the response of mechanical systems. The kinetic energy dissipated in the form of heat often induces nonlinearities, therefore reducing the reliability of standard stability evaluation methods. Owing to the difficulty of estimating the stability properties of equilibrium solution of the resulting nonlinear time-dependent systems, engineers usually tend to linearize and time-average the governing equations. However, the solutions of nonlinear and time-dependent dynamical systems may exhibit unique properties, which are lost when they are simplified. When a damper is designed based on a simplified model, the cost associated with neglecting nonlinearities can be significantly high in terms of safety margins that are needed as a safeguard with respect to model uncertainties. Therefore, in those cases, a generalized stability measure, with its parametric sensitivity, can replace usual model simplifications in engineering design, especially when a system is dominated by specific, non-negligible nonlinearities and time-dependencies. The estimation of the characteristic exponents and their sensitivity is illustrated. A practical application of the proposed methodology is presented, considering that the problem of helicopter ground resonance (GR) and landing gear shimmy vibration with nonlinear dampers are implemented instead of linear ones. Exploiting the analytical sensitivity of the Lyapunov exponents within a continuation approach, the geometric parameters of the damper are determined. The mass of the damper and the largest characteristic exponent of the system are used as the objective function and the inequality or equality constraint in the design of the viscous dampers.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Reference33 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3