Affiliation:
1. Professor Aerospace and Mechanical Engineering, Civil Engineering, Information and Operations Management, and Mathematics, 430K Olin Hall, University of Southern California, Los Angeles, CA 90089-1453 e-mail:
Abstract
This paper presents results related to the stability of gyroscopic systems in the presence of circulatory forces. It is shown that when the potential, gyroscopic, and circulatory matrices commute, the system is unstable. This central result is shown to be a generalization of that obtained by Lakhadanov, which was restricted to potential systems all of whose frequencies of vibration are identical. The generalization is useful in stability analysis of large scale multidegree-of-freedom real life systems, which rarely have all their frequencies identical, thereby expanding the compass of applicability of stability results for such systems. Comparisons with results in the literature on the stability of such systems are made, and the weakness of results that deal with only general statements about stability is exposed. It is shown that the commutation conditions given herein provide definitive stability results in situations where the well-known Bottema–Karapetyan–Lakhadanov result is inapplicable.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Reference22 articles.
1. The Kelvin-Tait-Chetaev Theorem and Extensions;J. Astronaut. Sci.,1964
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献