Study of Droplet Spray Behavior of an Atomization-Based Cutting Fluid Spray System for Machining Titanium Alloys

Author:

Nath Chandra1,Kapoor Shiv G.2,Srivastava Anil K.3,Iverson Jon4

Affiliation:

1. Post Doctorate Research Associate and Visiting Lecturer Mechanical Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801 e-mail:

2. Professor Mechanical Science and Engineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801 e-mail:

3. Chief Technology Officer (CTO), Manufacturing Research and Development, Manufacturing Technology, TechSolve Inc., Cincinnati, OH 45237 e-mail:

4. Vice President (VP) Machining Services, Manufacturing Technology, TechSolve Inc., Cincinnati, OH 45237 e-mail:

Abstract

The atomization-based cutting fluid (ACF) spray system has been found to be effective for improving the tool life and overall productivity during the machining of titanium alloys like Ti–6Al–4 V. The aim of this research is to study droplet spray characteristics of an ACF spray system including droplet entrainment zone (e.g., angle and distance) and droplet-gas co-flow development regions with respect to three ACF spray parameters, viz., droplet and gas velocities, and spray distance. ACF spray experiments are performed by varying droplet and gas velocities. Machining experiments are performed in order to understand the effect of the droplet spray behavior on the machining performance, viz., tool life/wear, and surface roughness during turning of a titanium alloy, Ti–6Al–4 V. The flow development behavior with respect to the spray distance is studied by modeling the droplets entrainment mechanism. The model is validated by the ACF spray experiments. Experiments and the modeling of flow development behavior reveal that a higher droplet velocity and a smaller gas velocity result in smaller droplet entrainment angle leading to a gradual and early development of the co-flow, and a better distribution of the droplets across the jet flare. Machining experiments also show that a higher droplet velocity, a lower gas velocity and a longer spray distance significantly improve tool life and surface finish.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3