On the Use of High-Order Accurate Solutions of PNS Schemes as Basic Flows for Stability Analysis of Hypersonic Axisymmetric Flows

Author:

Hejranfar Kazem1,Esfahanian Vahid,Darian Hossein Mahmoodi2

Affiliation:

1. Aerospace Engineering Department, Sharif University of Technology, 11365-8639, Tehran, Iran

2. Mechanical Engineering Department, University of Tehran, 11365-4563, Tehran, Iran

Abstract

Abstract High-order accurate solutions of parabolized Navier–Stokes (PNS) schemes are used as basic flow models for stability analysis of hypersonic axisymmetric flows over blunt and sharp cones at Mach 8. Both the PNS and the globally iterated PNS (IPNS) schemes are utilized. The IPNS scheme can provide the basic flow field and stability results comparable with those of the thin-layer Navier–Stokes (TLNS) scheme. As a result, using the fourth-order compact IPNS scheme, a high-order accurate basic flow model suitable for stability analysis and transition prediction can be efficiently provided. The numerical solution of the PNS equations is based on an implicit algorithm with a shock fitting procedure in which the basic flow variables and their first and second derivatives required for the stability calculations are automatically obtained with the fourth-order accuracy. In addition, consistent with the solution of the basic flow, a fourth-order compact finite-difference scheme, which does not need higher derivatives of the basic flow, is efficiently implemented to solve the parallel-flow linear stability equations in intrinsic orthogonal coordinates. A sensitivity analysis is also conducted to evaluate the effects of numerical dissipation and grid size and also accuracy of computing the basic flow derivatives on the stability results. The present results demonstrate the efficiency and accuracy of using high-order compact solutions of the PNS schemes as basic flow models for stability and transition prediction in hypersonic flows. Moreover, indications are that high-order compact methods used for basic-flow computations are sensitive to the grid size and especially the numerical dissipation terms, and therefore, more careful attention must be kept to obtain an accurate solution of the stability and transition results.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3