Multiresponse Metamodeling in Simulation-Based Design Applications

Author:

Romero David A.1,Amon Cristina H.2,Finger Susan3

Affiliation:

1. Universidad del Zulia, Escuela de Ingeniería Mecánica, Laboratorio de Simulación Computacional, Apartado Postal 4011-A-526 Maracaibo, Venezuela

2. Dean Faculty of Applied Science and Engineering, University of Toronto, 35 St. George Street, Toronto, ON, M5S 1A4, Canada

3. Department of Civil and Environmental Engineering, Institute for Complex Engineered Systems, Carnegie Mellon University, Pittsburgh, PA 15213

Abstract

The optimal design of complex systems in engineering requires the availability of mathematical models of system’s behavior as a function of a set of design variables; such models allow the designer to search for the best solution to the design problem. However, system models (e.g., computational fluid dynamics (CFD) analysis, physical prototypes) are usually time-consuming and expensive to evaluate, and thus unsuited for systematic use during design. Approximate models of system behavior based on limited data, also known as metamodels, allow significant savings by reducing the resources devoted to modeling during the design process. In this work in engineering design based on multiple performance criteria, we propose the use of multi-response Bayesian surrogate models (MR-BSM) to model several aspects of system behavior jointly, instead of modeling each individually. To this end, we formulated a family of multiresponse correlation functions, suitable for prediction of several response variables that are observed simultaneously from the same computer simulation. Using a set of test functions with varying degrees of correlation, we compared the performance of MR-BSM against metamodels built individually for each response. Our results indicate that MR-BSM outperforms individual metamodels in 53% to 75% of the test cases, though the relative performance depends on the sample size, sampling scheme and the actual correlation among the observed response values. In addition, the relative performance of MR-BSM versus individual metamodels was contingent upon the ability to select an appropriate covariance/correlation function for each application, a task for which a modified version of Akaike’s Information Criterion was observed to be inadequate.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3