An Investigation of the Gravity Flow of Noncohesive Granular Materials Through Discharge Chutes

Author:

Roberts A. W.1

Affiliation:

1. Department of Mechanical Engineering, Wollongong University College, New South Wales, Australia

Abstract

The flow of granular materials through curved or straight discharge chutes is classified as either “fast” or “slow.” Fast flow is the more efficient and occurs when the material flows in contact with the chute bottom and side walls, but does not make contact with the top. On the other hand, slow flow occurs when the material is in contact with all four faces of the chute. Under fast flow conditions, the grain stream thickness varies along the chute with the minimum thickness occurring near the point where the mean stream velocity is a maximum. The paper investigates the conditions governing fast flow and presents an approximate analysis to account for the grain stream thickness variation. The analysis, based on the assumption of steady flow, involves the solution of nonlinear differential equations. An equivalent friction coefficient is introduced to account for the frictional drag on the chute bottom and side walls; this friction coefficient is not constant but is found to vary with the changing stream thickness. Results of experimental investigations performed on chutes of known geometric shape are correlated with the analytical solutions. High-speed cine photography is used to determine the actual velocities and paths of individual grains in the moving stream, thus enabling the velocity profiles to be determined at different points along the stream. The paper presents data and recommendations for optimum chute design. These data include suggestions relating to the best chute shape to meet a given set of conditions and information concerning the optimum chute cutoff angles to avoid flow obstructions.

Publisher

ASME International

Subject

General Medicine

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3