Measurement of Laminar Burning Speed of Methane/Hydrogen/Air Mixtures at High Pressures and Temperatures

Author:

Lu Zhenyu1,Zhang Yusheng11,Metghalchi Hameed1

Affiliation:

1. Northeastern University Department of Mechanical and Industrial Engineering, , Boston, MA 02115

Abstract

Abstract Green hydrogen which could be produced from renewable sources by solar water splitting or photovoltaic electrolysis will play an important role in achieving net-zero in the near future. One possible approach will be to mix hydrogen with natural gas for power generation in gas turbine systems. It is necessary to know the physical properties of burning speed of the mixture of natural gas and hydrogen. Since natural gas is mainly made up of methane, the burning speed of mixtures of methane and hydrogen has been measured and reported in this paper. Adding hydrogen gas during the combustion of methane enhances flame stability, expands the lean flammability range, decreases pollutant emissions, and boosts the burning speed. Burning speed measurement is performed in a cylindrical and spherical chamber. The pressure rise due to combustion was measured by a pressure transducer on the top of cylindrical and spherical chambers. The Z-shaped Schlieren system, equipped with a high-speed complementary metal oxide semiconductor (CMOS) camera, obtains pictures of flame propagation. Laminar burning speed is measured exclusively for flames that have a smooth and spherical shape. In addition, burning speed is only measured for large flame radii with low stretch rates. Burning speed is calculated by a thermodynamic model with the pressure rise data as an input. Measurements cover a wide range of operating conditions. The hydrogen mole fraction is 0%, 20%, and 40%, with temperatures of 298–400 K, pressures between 0.5 and 5.5 atmospheres and equivalence ratios of 0.8, 1, and 1.2.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3