Affiliation:
1. Maurice J. Zucrow Laboratories, School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907-2014
2. En’Urga, Inc., West Lafayette, IN 47906
Abstract
The goal of this study was to determine when patternation information derived from Phase Doppler Analyzer (Dantec Dynamics, Skovlunde, Denmark, dual-PDA) measurements of volume flux, drop velocity, and mean size agreed with corresponding values measured using an optical patternator (Enurga, Inc., West Lafayette, IN, SetScan OP-600). To achieve this, data from each instrument were transformed into spatially resolved absorptances (equivalent to drop surface area per unit spray volume) and compared. Key conclusion is absorptance agreement to within 20% in many cases. However, discrepancies between phase Doppler analyzer (PDA)-calculated and optical patternator-measured absorptances become larger as the drop arrival rate increases, as the mean drop size decreases, and when a significant drop size-velocity correlation is present. These discrepancies are attributed to an underestimation of the volume flux (which becomes more important with increasing droplet arrival rate), an over-reporting of the mean drop diameter (which is the result of the restrictive data acquisition scheme applied when ensuring mass closure for the PDA measurements), the limited PDA dynamic range (which can preclude simultaneously accounting for both the largest and smallest drops in the spray), and by the optical patternator’s number-density based measurement scheme (which will not yield the same results as the flux-based PDA when a drop size-velocity correlation is present).
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献