Squeeze Film Damper With a Mechanical End Seal: Experimental Force Coefficients Derived From Circular Centered Orbits

Author:

Andrés Luis San12,Delgado Adolfo2

Affiliation:

1. Fellow ASME

2. Mechanical Engineering Department, Texas A&M University, College Station, TX 77843

Abstract

The paper presents parameter identification measurements conducted on a squeeze film damper (SFD) featuring a nonrotating mechanical seal that effectively eliminates lubricant side leakage. The SFD-seal arrangement generates dissipative forces due to viscous and dry-friction effects from the lubricant film and surfaces in contact, respectively. The test damper reproduces an aircraft application that must contain the lubricant for extended periods of time. The test damper journal is 2.54cm in length and 12.7cm in diameter, with a nominal clearance of 0.127mm. The damper feed end opens to a plenum filled with lubricant, and at its discharge grooved section, four orifice ports evacuate the lubricant. In earlier publications, single frequency force excitation tests were conducted, without and with lubricant in the squeeze film land, to determine the seal dry-friction force and viscous damping force coefficients. Presently, further measurements are conducted to identify the test system and SFD force coefficients using two sets of flow restrictor orifice sizes (2.8mm and 1.1mm in diameter). The flow restrictors regulate the discharge flow area and thus control the oil flow through the squeeze film. The experiments also include measurements of dynamic pressures at the squeeze film land and at the discharge groove. The magnitude of dynamic pressure in the squeeze film land is nearly identical for both sets of flow restrictors, and for small orbit radii, dynamic pressures in the discharge groove have peak values similar to those in the squeeze film land. The identified parameters include the test system damping and the individual contributions from the squeeze film, dry friction in the mechanical seal and structure remnant damping. The identified system damping coefficients are frequency and motion amplitude dependent due to the dry-friction interaction at the mechanical seal interface. Squeeze film force coefficients, damping and added mass, are in agreement with simple predictive formulas for an uncavitated lubricant condition and are similar for both flow restrictor sizes. The SFD-mechanical seal arrangement effectively prevents air ingestion and entrapment and generates predicable force coefficients for the range of frequencies tested.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference15 articles.

1. The Squeeze Film Damper Over Four Decades of Investigations. Part I: Characteristics and Operating Features;Della Pietra;Shock Vib. Dig.

2. The Squeeze Film Damper Over Four Decades of Investigations. Part II: Rotordynamic Analyses With Rigid and Flexible Rotors;Della Pietra;Shock Vib. Dig.

3. Identification of Dynamic Bearing Parameters: A Review;Tiwari;Shock Vib. Dig.

4. Dynamic Characteristics of Sealed Squeeze Film Damper With a Central Feeding Groove;Kim;ASME J. Tribol.

5. Experimental Investigation of the Design Parameters and of the Working Conditions on the Global Characteristics of a Squeeze Film Damper;Defaye

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3