Use of Bacterial Carpets to Enhance Mixing in Microfluidic Systems

Author:

Kim Min Jun1,Breuer Kenneth S.1

Affiliation:

1. Division of Engineering, Brown University, Providence, RI 02912

Abstract

We demonstrate that flagellated bacteria can be utilized in surface arrays (carpets) to achieve mixing in a low-Reynolds number fluidic environment. The mixing performance of the system is quantified by measuring the diffusion of small tracer particles. We show that the mixing performance responds to modifications to the chemical and thermal environment of the system, which affects the metabolic activity of the bacteria. Although the mixing performance can be increased by the addition of glucose (food) to the surrounding buffer or by raising the buffer temperature, the initial augmentation is also accompanied by a faster decay in mixing performance, due to falling pH and oxygen starvation, both induced by the higher metabolic activity of the bacterial system.

Publisher

ASME International

Subject

Mechanical Engineering

Reference19 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3