Assessment of Damage Progression in Automotive Electronics Assemblies Subjected to Temperature and Vibration

Author:

Lall Pradeep1,Thomas Tony1

Affiliation:

1. Auburn University, Auburn, AL

Abstract

Electronics in automotive underhood environments is used for a number of safety critical functions. Reliable continued operation of electronic safety systems without catastrophic failure is important for safe operation of the vehicle. There is need for prognostication methods, which can be integrated, with on-board sensors for assessment of accrued damage and impending failure. In this paper, leadfree electronic assemblies consisting of daisy-chained parts have been subjected to high temperature vibration at 5g and 155°C. Spectrogram has been used to identify the emergence of new low frequency components with damage progression in electronic assemblies. Principal component analysis has been used to reduce the dimensionality of large data-sets and identify patterns without the loss of features that signify damage progression and impending failure. Variance of the principal components of the instantaneous frequency has been shown to exhibit an increasing trend during the initial damage progression, attaining a maximum value and decreasing prior to failure. The unique behavior of the instantaneous frequency over the period of vibration can be used as a health-monitoring feature for identifying the impending failures in automotive electronics. Further, damage progression has been studied using Empirical Mode Decomposition (EMD) technique in order to decompose the signals into Independent Mode Functions (IMF). The IMF’s were investigated based on their kurtosis values and a reconstructed strain signal was formulated with all IMF’s greater than a kurtosis value of three. PCA analysis on the reconstructed strain signal gave better patterns that can be used for prognostication of the life of the components.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial Intelligence-Based Methods for Assessment of Accrued Damage and Remaining Use-Life in Automotive Underhood Electronics;2024 Pan Pacific Strategic Electronics Symposium (Pan Pacific);2024-01-29

2. AI and Feature-Vector Based Damage Monitoring and Remaining Useful-Life Assessment for Electronics Assemblies in Mechanical Shock and Vibration;2023 24th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE);2023-04-17

3. Remaining Useful Life Estimation using a combined Physics of Failure and Deep Learning-based approach on SAC305 Solder PCBs subjected to Thermo-Mechanical Vibration Loads;2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm);2022-05-31

4. Feature Vector Based Remaining Useful-Life Assessment in Mechanical Shock and Vibration for Leadfree Electronics;2022 IEEE 72nd Electronic Components and Technology Conference (ECTC);2022-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3